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ABSTRACT

2 For a transverse homoclinic orbit of a mapping (not necessarily

invertible) on a Banach space, it is shown that the mapping restricted to

orbits near' is equivalent to the shift automorphism on doubly infinite

sequences on finitely many symbols. Implications of this result for the

Poincard map of semiflows are given.
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. I ~ l. Introduction.

If 0 is an hyperbolic fixed point of a diffeomorphism F C C k(R ),

k > 1, n;> 2, and Ws , Wu  are the stable and unstable manifolds of 0, then

4* q E Ws n Wu, q $ 0, is said to be transverse homoclinic to 0 if IV is

transversal to W at q, Wu T Ws. The orbit y(q) = {Fn , n C N; set

of integers} through q is called a transverse homoclinic orbit asymptotic

to 0.

Poincare was well aware of the fact that the existence of transverse

homoclinic orbits implied that the flow defined by F would be very compli-

cated in a neighborhood of q. Birkhoff proved that there must be infinitely

many periodic points near q. Smale [15, 16] showed that there was an inte-

ger k and an invariant set I near q of Fk such that Fk restricted

to q was equivalent to the shift map a on the set of doubly infinite

sequences on two symbols (see, also, Moser [11], Palmer [13]). Silnikov

[14] discussed the set of all orbits of F that remain in a small neighbor-

hood of y(q). He then showed that F on certain subsets of these solutions

was equivalent to the shift map a on the set of doubly infinite sequences

on infinitely many symbols.

Our objective in this paper is to generalize these results to the case

of F E ck(x), where X is a Banach space and F is not necessarily a dif-

feomorphism. For a hyperbolic fixed point 0 of F, the local stable set

W s  and local unstable set W U of 0 are Ck manifolds (a proof is
loc loc

given below for completeness). However, the behavior of the global stable

set Ws and unstable set Wu may not have a nice manifold structure. Even

in the case where Wu is finite dimensional, the local dimension may vary

with the point on Wu . This necessitates hypotheses on Wu  even to define

W q• ~.V.~ . . ~ ."'."7* ''.-,,';. '; .'' ,.'.:"" '".,



a transverse homoclinic orbit. Under an appropriate hyNpothesis on

(there is an immersion from W N into Wu which covers -,(q)), a

transverse homoclinic orbit is defined and it is shown that the results

of Sil'nikov [14] and Smale [15, 16] are valid. The main theorem is stated

and proved in Section 5. The proof is a revised version of the horseshoe

argument (see [2], [12]). Holmes and Marsden [6] have also used the proper-

ties of horseshoes in the equations of a forced bean. Chaotic motion is

discussed in Section 7. The implications for the Poincare map for flows

are given in Section 8. Applications to retarded functional differential

equations will appear elsewhere.

§2. Notations and preliminaries.

Let X, Y and Z denote Banach spaces. If U is an open set in X,

then C k(U,Y) is the usual space of functions mapping U into Y which

are continuous and bounded together with derivatives up through order k.

The norm in this space is the supremum of all these derivatives. We also

let C k(x) = C k(X,X). The symbol (N-)(N+)N will denote the (non-

positive integers) (nonnegative integers) integers. By a submanifold of

a Banach space Z, we mean a regular submanifold (locally expressed as the

graph of a Ci map from X into Y where Z =X ® Y is a splitting of

Banach spaces).

If S is a topological space, we let 1N S be the infinite product

space with the product topology. An element T E TNS is a map T: N - S.

Define a :N S - NS as the shift map, r = UT, T 1 (n) = T(n+l), n E N. If

F E C 0(S,S), a trajectory of F is a map T E NS such that HF(r) = G(T),

where IF: 1NS INS is defined as T = TIF(T), TrI(n) = F(r(n)), n E N.

Obviously flF is continuous and the set of all the trajectories of F form

g* , .,: .-.. , . . . . . * * .. . . . - .".-' .- '.''' • . . .. .. .- - - .. ,. .l ..
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a closed subset TiNS, which is a topological subsapce with the topology

induced from TiNS. In a similar way, one defines respectively a positive

(negative) trajectory by a map r+(:-). A (positive orbit) (negative orbit)

(orbit) will be the range of (T+)(r-)(r) and will be denoted by (O+)(O_)

(0). For -r E TTS, let s = T(n), and write T = (S , l[ 1 )

to indicate that u(O) = s O  Thus r= OT is denoted by = ( '

S-l, s0][S1 , s2...). And, in this notation, rIF(T) = (... s 2 , [Fs,

Fs ....). We shall use T[ij], i < j integers, to denote the restriction

of T to an interval [ij].

Let - be an equivalence relation defined in the topological space S.

For any s E S, [s] = {s: s 1 - s} is said to be the equivalence class of

s. The quotient space S/- = {[s]: s E S} is defined with the quotient

topology. For a subset Qc S, define [Q] = {[s]: s E Q} as the equivalence

class of Q.

Suppose 0 is a fixed point of F E C k(X), k > 1. The fixed point 0

is hyperbolic if c(DF(O)) n {Ixl = 1} = V, where a(A) denotes the spectrum

of a linear operator A. The unstable set W u (0) and the stable set W5 (0)

of a fixed point 0 of F are defined by

W U(0) = U {negative orbits 0 of F : -(n) - 0 as n - ,

W s(0) = U {positive orbits 0 of F : T+(n) - 0 as n -+

The local unstable and stable sets are defined respectively by

- Wu(0,U) = U (negative orbits 0 of F : 0 - c WLI(0) n Ul,

Ws(0,U)=U {positive orbits 0 + of F : 0 +c WS(o) n UI,

TV* ~ ~ .' '*~* . .. ~S~ '[ u.")***
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where U is an open set containing 0. We use the notation W'o(0), .' (0)
loc- loc-

for WU (o,U), WS (0,U) if U is not relevant to the problem

If F is a diffeomorphism, one can always consider complete orbits in the

definition of ws(0). Furthermore Wu( 0 ) Vs(0) are C inunersed submani-

folds of X [5]. In particualr, if the dimension is finite, then the dimension

must be the same at every point. The following examples illustrate the dif-

ferences that can occur with maps.

' ck R2
Example 2.1. F E C (R ), k > 1, F(x,y) = (0,2y). For this case, the only

fixed pont is the origin 0 and WS(0) = {y = 0}, W'(0) = {x = 0}. The map

F-I is only defined on W U(0) and is single valued only if the range is

restricted to WU (0).

Example 2.2. We construct a delay differential equation with a hyperbolic

equilibrium point having a two-dimensional local unstable manifold. The

unstable manifold collapses into a smooth one-dimensional manifold along

one of the trajectories, a phenomenon that could not happen in ordinary

differential equations. The time one map for this example will have the

property that the dimension of the unstable manifold is not the same at

every point.

Consider the delay equation

(2.1) x(t) = A(x(t))x(t) + (x(t))X(t-1),

where x E R, a(x) and 6(x) are defined as
2e-1 c2
e- 'e e-i l iZ

(i , 0) ," 2;

( (x),P(x)) = c' functions of x, satisfying that

t(x) + i(x)e- when 1_ xl _ 2.

Also, -Y(x) and 2 .(x) E C(R).

ej1 .. . * ... .-.. .-... .... .. -..- , .- .'.........!- .... ... . ... , - . .4,% q:,,.,~ v" -' Y,": " .



The origin 0 is an equilibrium po int of (2.1). Equation (2.1) is lineir

in a neighborhood of 0 and has I and as2 thle positive

characteristic values. Al1l the other characteristic values hav-e negativ'e

real parts. Thus (See [3]), there is a ne0ighborhood U of (1 suchi that

dim. W U(0,U) = 2. Let x(t) = cc be a solution issuing- from IV (O)

For some large t > 0 we hve inf 'X_(C. > 2, and in a neighborhood of

1--

X-, (2.1) becomes _(t) = x(t). Let E C[-1,01 be in a small neighborhood

t

tive direction. It is easy to see that no t E IV i 2 near ie

Therefore, the unstable set in this neighborhood of X smooth mani-

fold but of dimension 1.

Take the time one map F = T(l) of the solution map T(t) of (2.1).

We have an example with the property that the hyperbolic fixed point 0 of

F has a local two dimensional unstable manifold which collapses into a one

dimensional manifold.

Suppose F E C k (X), k > 1 and 0 is an hyperbolic fixed point of F.

We shall prove that Wuh (0) and so(0) are submanifolds in 3. An orbit

0t is an homoclinic orbit asymptotic to a fixed point 0 of F if 0

a W (0ef W(0) and 0t X {0s . An homoclinic orbit 0 asymptotic to a

fixed point 0 of F is said to be a transerse homoclinic orbit if

1) 0 is an hyperbolic fixed point;

2) for any sufficiently large pair of integers ij > 0, such that
.s i4 j U

T(-i) E WUo(0) and r(j) E IV1 S(0), F sends a disc in IV o (0)
is' c boc c

containing r(-i) diffeomorphically onto its im;age which is trans-

verse to Ws  (0) at i(j)
1Oc

7 Z
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US
-oticc that w (0) , I's(O) may not have a manifold structrc cven il ;1

small neighborhood of 0- llotever, condition 2) implies that te can attach

UAr- -i to each T(k) E 0_, k E N, small pieces of submanifolds IV (T c (r)

and Wlo (T(k)) c 0s(0) diffeomorphic to WIo (0)) and W>o S ,
bolc- 10c

spectively, and such that

(2.2) W oc(-(k)) I (:(k)) at -(k) E 0.

Furthermore, FW u (-(k-1)) D W lo((k)) and FVo(S(k)) C ,So( -  1)).

boc boc bc 10C

This can be done as follows. If i,j are given as in condition 2), then

u u s > U ql
W (TOM = W (0), k < -i and .(.(k)) (V
boc boc -bc Ic ' - loc

k > j is defined as a disc in F k W+ IV i)) diffomorphi c t o IV (0)_ loc((), dfoorhct loc(/
q ' k~i u

by 2). For -i < k < j, F W (-i)) still contains a disc covering
1 oc ( (F

T(k), and shall be defined as (c (K)), since (F j+- )- 1FO-k is the inverse

of Fk+i by 2). W (T (k)), > k, can be obtained by considering the trans-
OC '

versality of Fj -k to Woc (:( )) and (2.2) follos similarlv. Therefore,

there is an immersion from I U (0) N iito W U(0) and an ilmnersion from
10mc

Wio (0) x N into S (0). Both cover 0. but air not necessarily injective.
4 boc

Briefly, we say that Nu(0) is transverse to 1 s (0) along 0. if no am-

biguity can arise.

Example 2.3. Let us consider the interval map F : [0,I] , [0,1], F(x) =

= uX(l-x) 0 < < 4. The map F is not invertible and has a fixed point
1

x = 1 - - , > 1, which is hyperbolic if $ 3. When = , an homocl inic

orbit is plotted in Figure 2.!, which hits x0  after a finite number of

iterates of F, an observation previously made by Block [1]. It is easy to

check that the homoclinic orbit is transverse.

, 'a ,,, '_',,.. " . ,'.: ..'.,,.. , ,¢ "'€": """- _"," . ,.-- ..-.'. -",:. .'- -. -,.. . ".,""... -. . .... • ."' ."._ " -." ." -.' "-. ",-- , '
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V.

0

Figure 2.1

Example 2.3 is a special case of snap-back repellers defined by Marotto

[10] which will be discussed later.

§3. Stable and unstable manifolds.

In this section, we state and prove the existence of local stable and

unstable manifolds Ws (0) and Wu (0) of a hyperbolic fixed point of a
boc loc

map. The existence of the local stable manifold follows from [7] with very

little change needed. For a diffeomorphism F, the existence of the local

unstable manifold follows from the existence of the local stable manifold of

F- I . However, if F is noninvertible, a direct proof for the existence of the

Icoal unstable manifold is needed (see [5]). In spite of the fact that the

result may be known to some people, we give the proof for completeness.

Theorem 3.1.

Let X, Y and Z = Xx Y be Banach spaces and A, B be linear continu-

ous maps in X and Y respectively, with a(A) < I and a(B) 1. Suppose

that I IA,,,B 1_ X for some constant 0 < , < 1. Suppose IU is an open

.4
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neighborhood of 0 in Z and f U - X, f : - Y are C (k _' 1)

maps with f.(0) = 0, Dfi(OW = 0, i = I Consider F : U , Z
I..

, (3.1) X = Ax0 + f 1 (xoYO)

F :
(3.2) Yl = BY0 + f2( Xo0 0 ) "

Then there exist open balls C1, D1  centered at 0 in X Y respectively,

and a unique Ck  map h 1 : C1 - D with h 1 (0) = 0, Dh1 (0) = 0 such that

F (graph h ) c graph h1 .

The restriction of F to graph h1 is a contraction. Moreover, if

F n(z) E C 1 D1 for n > 0, z E graph h1.

There also exist open balls C2 Y DI centered at 0 in X, Y repsectively,

and a unique Ck map h. : D2 . C2 with h2(0) = 0, Dh2(0) = 0 such that

the restriction of F-  from graph h into itself is a well-defined single

valued Ck  contraction; thus, a diffeomorphism onto F- (graph h2) with the

inverse F as an expansion. Moreover, if z E C 2x D2  and the negatively in-

finite trajectory F-n (z) E C2x D2, n > 0 exists, z E graph h-,.

For the proof of the last part of the theorem, we consider the Banach

space z of the bounded, negatively infinite sequences in Z; that is,

= {zi, i > 0}, with the norm I{zi}Iz = supjz-i z. Suppose g E Cr(z)
i t >i>0 -

with all the derivatives being bounded in any bounded set of Z. The map

rPg : j - z is defined as THg(z)(-i) = g(z(-i)), i > 0 for {z_ E k.

Unfortunately, since continuity does not imply uniform continuity in infinite

dimensional Banach spaces, Fg is not Cr even for r = 0. The remedy is

to consider a subspace z0 C 2, {z .} C z0 if and only if z- - 0 as i
~1I -
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The following lemma is very elementary and can be easily proved by induction,

but works as well as the lemmas in [7], [8] for composition maps.

Lemma 3.2.

Le -Z r adr
Let g :Z - Z, g Cr  and g(O) 0 0. Then Fig z 0  is C and

(flg) (k) Vg(k), k < r.

Proof of Theorem 3.1.

For any > 0 and any Banach space E, let BE  {x E E :xi < }

For c > 0 sufficiently small and any" y E B y E BC0 , define

*.1* nd"= Ai--l ~ -n n B-n-b-

(3.3) G(y,y)(-n) = ,(-n) A( f A' B((-i)), y - B-i)
i=n+l i=l -

It is not difficult to show that G(y,;,)(-n) -*0 as n - =. Thus, G BY B. O

r
+ 0* Lemma 3.2 implies that G E Cr

. It is clear that G(0,0) = 0. Ap-

plying the Implicit Function Theorem to the equation

(3.4) C(y,y) = 0

in a neighborhood of y = 0, y = 0, we have a unique Cr map D : B)" B ,

•0(0) = 0, for some £i,£2 > 0 which solves (3.4) as - = U(y) in By x B 0

Let P : Z be the projection taking y to y(O), h2 B: 1 X defined

as

P4(y) = D(y) (0) = (- ) ,y)

= (h,(y) ,y)

is Cr with h2 (0) = 0. The Implicit' Fucntion Theorem also enables us to

compute DD(O) by computing DG(0,0) and thus, conclude that Dh,(O) = 0.

It is easy to check, from (3.3) that

>(y) C-n) = F(,(y) (-n -1)), n > 0.

-
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We have obtained that for v E , = h2(Yo), z0  (xo'Yo)' there

ex ist z.EF'z0  :0'0 -I

exists z-i E Fz O , i > 0 defined as z- = ¢(yo)(-i) and z_iJ < c.

Since D is continuous, there exists < :l such that YOE B v i mp lies

z- < E1 especially -y < c1" We shalsee very soon (see (ii) below)

that
9

G(y_, {z__, i >o}) = 0

Thus, y_1  By and xl h2 (yl). From

S.1

=By 1 + f' 1 h(1 p% YO :.B-I f- h (Y-l1) , Y -1 ) '

using the Implicit Function Theorem, one concludes that, if El is sufficiently

small, iy- 11 < XJyO , 0 < X < 1, and, thus, y 1 E By . This completes the proof

that F 1  is a contraction on graph h1,, tyi I £3

Let C, D be open balls in X, Y such that C D c BZ , D c B'
22 2 3

and h2 (D2 )a C2 . Then the restriction of h2  on D2  satisfies all the

assertions except that we have to verify that

if {z i, i > 0} is a negatively infinite trajectory in B: then

(i) {z .. i > 0} E ZO;

(ii) G(yo, {z.i}) = 0.

For any 0 > 0, there exists £2 >0 such that HJDflII, iDfi-, <

if Izi <- 2. Let {z_i, i > 0} be a negatively infinite trajectory in

B . By induction
E2

l xAkxi-k + Ak - f1(zOik) + . + f1(z.i-1 ),

Y = B- Y - B 1 f2(z-l) - ... - B f (z).

- 0 2 - i



Let k- c,

= j f I
Y-% = B- 1 I i+j-l j

" Y-. = Yo - Y B- _f( .',

j=l 2

Then,

(3.5) Zi i i j+l iZ + o(3 sz il '__ I Yol + a I X I _j[ I + I X I z-i-j ll •

j=I j=0

-, Suppose 6 = lim Iz-il > 0, then for any > 1, there exists i0 > 0 such

that Izil < t6 for i > i0, and

(3.6) Izi <_ Xiy 01 + 0 i -j+l z I  L
il Iyl I jl + fX-• j=l

If 1e 1, we can choose > 1 such that 20- . < 1. Let i .+ in

(3.6), lim zi< 2-6- ,c8. The contradiction shows that a = 0. Therefore,

{Zi, i > 0} E to, together with (3.5) imply (ii).

§4. Some basic lemmas. Consider F Z _ Z defined as (3.1) and (3.2).

Assume all the hypotheses of Theorem 3.1. By a C1  change of variable, we

assume that the local stable and unstable manifolds are flat, i.e., W (0)
boc

={y = 0} and W oc (0) = {x = 0}. Thus, in addition to the hypertheses in

Theorem 3.1, we assume that f1(0,y) = 0 and f2 (x,0) = 0. Consequently,

(4.1) fly(O,y) = 0

(4.2) f, x(XO) = 0

A closed e-ball in a Banach space E with center zero is denoted by BI.

For any 0 > 0, we choose > 0 so small such that IDfll, IDf2I < r in

ji '£ - -, ' ' ' ' ' ' "" ' ' ' ' " " " " '
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, 7 II .C

B.E We assume that W loc(), W( oc(O) is contained in B E and

(4.3) ,\+ < 1.

Definition 4.1.

A C 1submanifold (p is said to be an s-slice of size ___

x Uor an s-slice modeled on BE intersecting loc (0) transversally at

(O,y*) with Iy*I < 6 and having the inclination < K, if

(P = {(x,y) : y = g(x), Ixj < 1 , ly*l = g(0)l < 6, gE CI and lDgll _K}.

11A C I ubmanifold (P uis said to be a u-slice of size (C1,S,K) or

a u-slice modeled on By intersecting Wl o(0) transversally at (x*,O)
Eli £,c

with x* < a and having the inclination < K, if

(Pu = {(x,y) : x = h(y), lyl <_ El, Ix*i = Ih(0) < 6, h E C and I jDhj < K}.

In all of the above, cl,6,K are positive constants.

Lemma 4.2, 4.4, 4.5, 4.6 are called the Inclination Lemmas and for dif-

feomorphisms in Rn, see [2] and [12]. They play the same roles as Lemma

3.3, estimates (3.5) in [14]. However, those estimates are not valid in our

case.

Lemma 4.2. Given K > 0, there exist E1. 6 > 0 and c > I such that

(i) for any u-slice fu of size (E0 /c,6,K), E0 < 1 , F sends c u

diffeomorphicallv onto its image and By n F( ) is a u-slice of
C0

size (Co,6,K) ;
(ii) for any s-slice Q of size (CO/c,6FK) CO < t BO n -1 is

_____~ oLsz c/,,) C 0 C 0

a s-slice of size (C,6,K).

, ,-" ,--.v.',-. , -":--, ;'.-?." N :.- --,..- - 7: . " - - -,4':.- -:-
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Proof. (i) Let F (xo,Y 0 ) - (xlYl), (x0 ,Y0 ) E 4u" Asstune that is

small and satisfies

(4.4) 1 < d - 1 (K+1)

For this O, choose £ > 0 so that I Dflj , I Df2 l < e in B- Let E:

satisfy

£ E

(4.5) E <  + KE <

1 2 1

Then tPo cB and
E

(4.6) x I = A(g(y0 )) + fl(g(y0 ), y 0 ),

(4.7) yl = Byo + f2 (g(yO)' YO).

Write (4.7) as

(4.8) B-1 yl = y 0 + B-1 f2(g(Y0)' Y0)

-1

The Lipschitz constant for B f2 (g(yo), yo) as a function of yo is bounded

by XO(K+I). By the Implicit Function Theorem, the right hand side of (4.8)

defines a diffeomorphism from yo EB E-O/C to B '1 which covers a ball of

radius (1 - Xe(K+1))s 0 /c. Therefore, y 1 covers a ball of radius

1 - XO(K+) j =d .

c c 0

Let c, asserted in the lemma, be c = d. Substituting yo as a function

of yl into (4.6), we have a u-slice x, = gl(yl), modeled on By and

0transverse to Woc (0) at F(g(O), 0) = (gl(O), 0). Since FIlW-oc(0) is

a contraction, g1 (O) Og() - (S. It remains to show that jjDgljI < K.

4
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Let ( be a tangent vector to Q at (X 0 Y), Y O 0 and K.

Let (',') =YO)

L'I~~ f, (A +f - + f \

"" = ftxf + (B + fv)

(+ .) + DfvH iI
(4.9) < (I - n ,L L

(x + ,;)K + HflyII
- d

Suppose 6 is small (E is small), then

+ < K,
d -

and (i) is proved if ci,6 are small so that (4.5) is valid.

(ii) Let

(4.10) E1 <- 'K + 6 2<

Let (xly 1) E ,Ps , an s-slice of size (cl,6,K). We look for (xo,vo) such

that F(xoYo) = (xl,Yl)

By0 + f 2 (x 0 ,Yo) = h(Ax 0 + f1(xoYo))

or

(4.11) YO = -B- f 2 (x 0 'Yo) + B-1 i(x0 + fI(x 0oY 0 ))

We use the contraction mapping principle to solve (4.11). Let II be

the set of all the continuous functions form B x into B>'/2 with the

distance of ark'; two functions in II given by the supremum norm. Let c " I

.................... ..... ',-,. v".-',.%.--,-,.,."'--.-,-. '.-., 2 ' , , X, ,-
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be such that

(4.12) 1" + "I < 0/C.

The existence of such c is from (4.3). A continuous function FP(.) is

defined on B-X for any P E i as
EQ0

(4.13) FO(x) = -B- f 2 (x,.P(x)) + B- h(Ax + fl(x,(,D(x))

since f1 (O,y) = 0, jAx + f1(x,.P(x))I <_ x O + 0% < r0/c by (4.12) and

h is defined on BX O/c. Furthermore, RP E H if

(4.14) -. + X(K I +6) <

The verification of (4.14) uses f2 (x,O) = 0, (4.10) and (4.3). We observe

that F : H -) H is a contraction if e is small. Therefore, there is a

unique fixed point of F, denoted by h. We can show that h0 E C (Bx )

by using the Implicit Function Theorem locally to solve (4.11) in the

neighborhood of (xo,h 0 (x0)). We also see that h0 (0) < h(O) < 6 since

FIWu is an expansion. It remains to check that I jDhol] < K. Suppose

( ,r) is a nonzero tangent vector to F-1 (s at (x0,y0 ).

B + f + f 2y.r = Dh(Ar + flx.F + fl ,

[i(1 - x, - Ko) < (x2 K + >,)K + xIjf,×x )jQ .

I&1 - 0 would imply that Inl = 0, thus Irj # 0 and

l"K + >,K,> + II f-,Xll

(4.15)
+)K f 2xf

d

"-'. '4.'' .' * "*, ;, , " ' . *," * , "> Q
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If a is small (E small) (3 + A)K + < K and (ii) is proved. Thisd

completes the proof of Lemma 4.2.

(1) (2) -slices of size (E:,),) and

Definition 4.3. Let .p , be two ui K) n

let (1) (2 be two s-slices of size Define the distances

with respect to the uniform norm as

d(Q) Q (2) = sup Igl(y) - g2(y)u wu  ly<
IyIc

d(Q (1) ( = sup [h (x) - h (x),
S s x <x C 1  2

where (i) (ii) are graphs of gi, hi, i = 1,2.
e " where u '<s'"

Lemma 4.4. Given K > 0, the constants ei' 6 can be chosen so that the

results of Lemma 1 are true. Moreover, there is a constant 0 < X < I such

that

d(Fn (l) Fn(u2)) < (X)nd(Qu(), 
u

5 < 5 F5s 
),

where Fn , F - n  are abbreviations for (By  n F)n  and (Bx l F- ) n  which

are defined inductively as follows: while applying on a set V c -,

(By fl F)1 V = By  n F(V), (BX n F- )1V :B n F-I(v),

* -a n F)n+l V = n F[(B y  n ) n V], (Bx n Fl) n+1 =
Cl:

= BX n F- [(B x  n n- V] , n > 1.C,

4 Proof. Suppose El, E2  are Banach spaces and (p E C (E 1 ,E,). We define

12
ev : C (E1,E2) xE 1 -E E2  as ev(w),e) = .p(e). Let

-- 4 ;';,,, w ': , '-.,.,", .. , . / . . - . ... -.. . . . ... .. . ., . .,.- . -. .... " 7'. - - ,.
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r.l

m"; -= (t-1)g + (2-t)g1

h = (t-1)h_ + (2-t)h 1 < t < 2.

We first consider

x = Agt(Y0) + f 1 g(y '0
) ,

,Y = BY0 + fO),(gt(Y0 ) '  '

or

(4.16) x1 = A ev(gy,y O) + f1 (cv(gty 0), yo),

, (4.17) Yl = By0  + f2 (cv(gt'Y0 )' Y0).

4 For y fixed, yO can be solved as a function of t in (4.17), and

substituted into (4.16) to obtain xI  as a function of t. We shall

axI
estimate --- by more symmetric formulas. Assume that 6)y0 , 6x I , 5v 1 , -t

are tangent vectors in the corresponding spaces, and Dgt  is the derivative

of gt(.). Then,

6xI = A[ev(g,-glSt, y0) + Dgt.6y0 ]

+ f lx.[v((g2-g) )t, yo) + Dgt.6Yo] + fly' *,I lI

0 = 6y = By 0 + f 1 5[eV((g2 g)6t, y0 ) + Dgt.,y O ] + f,\,Sv 0

(1) , (° 2, "i6Xl <_ (X+4 [d((P ( ) , D(2)I t + KyI + Y () '
u u 0

_,~~~~1 ( 2 ) lctI + KjS>'oI] I , , : i
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3t u t '

Usig he stmae fr Vo / t[ we find that, when .:is small, there

exists 0 < h< such that

< x_ _ -(Q 1) (2)(
3tu - dK dD .u

Therefore Wxl(Yl,gl) - x+(lgl) _t < d( ( ) ,
u  The

first inequality in the emma is proved.

exiNext consider

- 1) (2) ). sB6y( + f- )yo) , (x + f

Therefore

Nex o1s ider

and x (Xoh ) Yo(Xo h I b a f dc t i)n if

0y 01 1 "1 t \K_ d, p



the second inequality is proved. Th is completes the proof of the lemma.

o Lemma 4.5. Assume further that Df and Df, are. uniformly cont intiois
*'- -'. in B'. Then, for any K 0, can be chosen such that tar any u-sli c

D (s-slice Qs) of size K) , f is a u-slice (I -n ( is an s-slice)

of size ( l6n,Kn), with 3 n and K -0 as n-... where 0- <1n n- n - ' _

and F n
, F are abbreviations as before.

Proof. Only K -# 0 has to be proved. Since f (0,y) = 0, by the uniform
n l1

continuity of Df for any -, > 0 there is a > 0 such that f (x,v)

_< if Ixl < r and ly! < c . From Lenma 4.4, there is an no > 0 such

that Fn BXx By  for n > n o. By (4.9), we obtain that Kl
F u 0 I

n > n0 *. Thus,

K < (",) K +
n0+n d n

. lim K <
n). n - d- +

Since is arbitrary, this implies K n- 0 as n '.

° n

A similar proof is applied to F-ns , if we consider f., x(x,O) = 0,

uniform continuity of Df2  in a neighborhood of 0, !emma 4.4 for F-nlQ

and (4.15). This finishes the proof of the lemma.

The proof of Lemma 4.6 below is similar to that of Lemmas 4.2, 4.4 and

-. 4.5 and shall be omitted. However, due to the lack of uniform continuity

, of the derivatives, the results concerning C closeness must be formulated

very carefully. Let M 1 and M, be C1  submani folds in Z. By M, is

C,- near M 1 , a pos it i ve number, we mcan that there arc IBmach n Ipaces

El1 such that Z F 1 , 1 ;and a constant 0 such that M1. is the1' 12' -h''1 , Co ver el

graph of h. B" - I i 1,2, and h 1 1, F co X hlels0

%... . , ............... . ...... -
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questions arise. Mhat is the range of J" Is J injective? If . 1  i
i -1

injective, is J1 continuous? 'rhe affirmative answer to these questions

" would ensure that T- is homeomorphic to the subspacc of sequences of

symbols (Uis) and M', acting on TC, is equivalent to the shift operator

defined on the space of us via

Definition 5.1. For S = {U0 ... ,U and - > 0 an integer, a subset

TU c TT S is defined as T C TU if and only if
N u

1) tu(i) = U. implies that r u(i+l) = Uj+I for I < j m,

2) jT =-

2) T (i) = U implies that T (i+j) = U for 1 < j < -,
u m - --

. 3) Zu(i) = U1  implies that .(i~j) U0  for 1 < .I < k.

TU is a topological space with the topology induced from N S.

To understand the meaning of this definition, suppose 0U U is a

neighborhood of a homoclinic trajectory asymptotic to a fixed point 0 of

* F. Suppose 0 E U Then to say J ' E TU is equivalent to saying that,

if T(j) E U0  for some j, then it stays in U0  for at least k iterates

of F and one can leave U only by going to U and then march back to
40 1

U0  staying again for at least k iterates of F. The same remark applies

to F The main theorem stated below is saying essentially that J is

a homeomorphism between TZ and TU if IO U. is some neighborhood of a

0' <m

transverse homoclinic orbit.

We are ready to state our main theorem.

Theorem 5.2. Let X, Y and = . Y be Bamach spaces, 1: - defined

as in Theorem 3.1 with I uniformlv continuous in a neighborhood of the

hyperbolic fixed point of F. Assume that the local stable and tinstab le

4. . . . . - . .. . - . . - . . .
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manifolds are WIV (O) = {v = I 0} Iloc(0) {x 0), that (I.), (.2)

are satisfied and W loc(0) {0}. Suppose I' is a holoclinic trajectorv

1
... and T' (z) - 0 as i ±.Let N > 0 be anintege- ,ih (X fk)

wit (-)C))(0
and - z(N) E IV ocio) where IV loc() and I oc (0) are contained in - and

(4.3) is valid in B- Assume that the following conditions are satisfied.

1) F2N  sends a disc 0 C I oc(0) centered at -F(-N) diffeomorphically
1 boc Z(N ifoopial

onto.0-F 2No1
onto 01 , containing TF(N).

2) 02 T o z(N).

Then Tr is a transverse homoclinic trajectory. Furthermore, there
z

exist pairwise disjoint open subsets U0 5 ... Ur, m > 2, in Z, and an

integer k > 0 such that 0 E U0 , OF c 0 U. and such that J is an
O..m 1--

homeomorphism between TZ and TU defined in Definition 5.1. HIF acting

on TZ is equivalent to a acting on TU via Jl"

The open set U U. is called the extended neighborhood of 0,, with
0<i<m 1

U the "body" and U U. the "handle".
0 l<i<m z

Before proving Theorem 5.2, we give a symbolization consisting of

infinitely many symbols for a subset of TU.

Definition 5.3.

TZ = {r : Tz E TZ, z (0) E U0  and C-(-1) E Um},

U0= U TU, u(0) = U () a Un

The set TZ 0 (TU 0) is both open and closed in T (TU) . W e obser\e that

i< i'" ~~~~U (TZo _"{( 0[ )

4 II (TU) = TINf( U][U0 ,. )
"a i

. .... . . . . > . . . , . . . . .. . ., , , . ... , . .. ,- - . .
(. ' , • ' t, . -,.:"."-.".. ,'.'-:-. :... . 2 : "d J ' " . .':.:, - :'. , .2 . .. . . 5 _ '

.
2
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and J1(TZ0 ) TU0 , TZ0 DJ I (TU0) Therefore, J1 : -( .... 0][0 ....

T.k{ ( ... U0 ][U0 ... )} is a homeomorphism i.f and only if J : T 0 T- Tn0

,*.. is a homeomorphism, since J1> = if and only if J 1 (QT) a and

o is a homeomorphism on both TZ and TU.

Let [k,+] be the space of all the integers > k> 0 furnished with

the discrete topology and compactified by +'o Let FT [k,+,o] be the product
N'

space. For any TT= ( k ,...,k 1 ][k 0 ... k....) E F1N[k,+] a corre-

sponding element 7 E TU0  is defined as:

1) T (z) = U if and only if
u m.

(A) Z = - k. - jm - 1, j = 0,1,..., provided z $ - ;

(B) Z = k. + jm + m - 1, j = 0,1,..., provided z $ +=.

i=o
2) T (,-i) = Urn 0 < i < m, for all 2 defined by (A) or (B).

3) Tu(i) = U0  if not defined by 1) and 2).

Accordingly, J, : rTN[ k,+-] - TU0  is defined, continuous and onto.

Definition 5.4. A quotient space TN = rN[k,+.]/- is defined if T -

N if N
,...,k(l)][k ...,k. (2) =(2) ) 2)

1 0N ( k-i -1 0

k means that there exist - < n < -1 and 0 < n2 < +- such

that = k (j = +, j = 1,2, and k(1 ) - k(2) for nI < i n2 .
-. nI  n2 1

1 2

Thus, the map J2 : TN + TUO , J 2 [r[-] = J, - is well defined, continuous,

injective and onto. It is easy to check that a basis B for the topology

in TN is

S= {[B] : B = : rt[-i-1, j+l] E (> k,k ..... k1l][k0  ... k ,k)}).

where k ...... k 1'k0" .,k are integers and k > k is an integer, > k

stands for [k,+] c [k,+ ,.

'.2
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Theorem 5.5.

TU0  and TN are both compact and llausdorff. J is a homeomorphism
0 __ _ __ _ __ _ _--__ _ _

from TN onto TU0.
"0*

The proof of Theorem 5.5 is elementary and is omitted.

• . Proof of Theorem 5.2. We first show that when 0, is small, F sends 02

. diffeomorphically onto a disc j. VV'W (0) at :L(N+I). Let 02 = {(xo,)Y

x0 = g(y0)} with the inclination KO . Consider

Byl 0 
+ f 2 (g(yO) ' y 0 ) "

Since f 2 (Ir(N)) = 0, for any > 0, we may let 02 be sufficiently small

so that f 2 (x,y) < 5  in 0,. Thus I-- - ! < K0J + , and Y0  can be

solved as a C function of yl if x(Ko0 + O) < 1. Substituting into

(4.6), x1  is a C1  function of y1 " Therefore, by induction, Fi0, con-

tains a C1 disc . W (0) at TF(N+i), i > 0, with the inclination K.

and is diffeomorphic to a disc of 0.. We give estimates on Ks. Let

(Qiji), 'ij 0 be a tangent vector to a small disc contained in F 02

on which we assume that I1f2x(x,Y) I <

!i Ki I - [(A + fl x)'i + flvnil

'i+ll 12xi + ly)nil

~~~< (,+!K i  "

- d.

where d. -T(Kji + , There exists a constant d such that

FdiO?!td. > d > 1 for all i > 0 provided that the disc contained in F 9is

. '....,... ... ...".v .-. ........ * ..-, ..- .- . *. . .. ".,.,.'v. v..,..5 -' 'i'v:'':,, % ",¢-,, ¢ .



sufficiently small, and . is sufficiently small, since we have . + 1

Therefore,

V-1

K.K

andV.,

K < K + K i > 0.i 0 d~

This completes the proof of the transversalitv of the homoclinic trajectory

• . .. F.
z

We next consider F NW (0) in a neighborhood of ["(-N). From

Lemma 4.6, it contains a C 1 disc Wuoc(0) at -:(-N) and is denoted

by R1. Analogue to what has been done in Lemma 1.2, we obtain that Y-FR

contains a disc Wl(0) at 1 F(-N-i), i > 0, with the inclination

< K for some constant K > 0. The key to the proof is (4.1) and

ifl(x'Y)I being arbitrarily small in some sufficiently small neighborhood

of each -r(-N-i).
z

We now construct U0,... ,Um and k as asserted in the theorem.

Suppose that e1, 62 are positive constants such that for u-slices of

size (s2,l,k.) and s-slices of size (Le 2 ,KI ), Lemma 4.2-4.6 are

valid. Assume that only a finite number of points of 0 denoted by
x Ty

ql,..., , m > 2, are outside U =B B . There exist an open neighbor-

hood V. for each qi such that

V. j V. = , I < i I j < m-i,I - -

v- V.0 = .1< m l
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.5l

FV cV i+ I < i <n- 2I i

F. m1-i C - - "

Let po,pl E 0 Tr n D, Fp1 = (11 Fqm- = pO' and m p 0 = PO"
z

'.5 V0 V3

U." U V4Q

80 U Do Vmi1

"-"0 
0 O-

8L I

Figure 5.1.

We have shown that it is legitimate to assume that FrNo (0) containsc 1 o

a C disc rp00 II) WS (0) at po with Q0  being a u-slice of size

(Ccl-n,K.-n) and that F -noc(O) contains a C disc o1  Wu  at

P1  with (P, being an s-slice of size (c4 , 1-n, -n) with some constants

2, 0 < C3 < E2 0 < C4 < 1, By Lemma 4.6, if 0 <r 1 < T, 3' are

- . . . • - • • - • - ". "*'". 5- "*'*"- * 
%2 ' 

%
"-" *\ ' " * ,' , *% *' **" 

•
S-
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"i m C1 U c(}

small enough, the 1 image of any u-slice C near W1  (0) contains a

u-slice C1-n near (pb, and hence, a u-slice of size (.L -, lr+7 ,K ), and

2 the F- m  image of any s-slice C I near W s (0 contains an s-slice
boc

C-n 1 near pl, and hence, an s-slice of size (c 4 ,a 2 -n+ K). 1We denote

the family of all u-slices of size (c, 1 -n+nl ,K) by U and the family

of all s-slices of size (c 4 , -n+n K, ) by S. We may" assune that U c ti
1'

and S c U in the point set sense. We u..e W or CIPW to denote the closure

of a set W.

Consider BL (k) L-(By  F) 4 for a positive integer k. When k
1k>k ~

is large, BL1 (k) is C1 near By  and ( )) is cl- near Q

x -1 k
Similarly, consider BL ((B n F-k S. When K- is large, BLo},)

1iiary osie L0(k k>k LI 1

is C near Bx  and F-m(BL 0(U) is C - n  near 1  I f r 1 is small

and k is large, Fm(BLI(k)) rf BL (k). The intersection is denoted by D

Also F-m(BL0k)) 0 BL Ik) and the intersection is denoted by 1)1. V e may

* assume that D0P D1 c U and FP I c V It is clear that I m{ = 1 I, d

F-roD0 = D if restricted to a neighborhood of p1 '

It also follows from Lemma 4.6 and 4.2 that it k is large enough, Fm+ k

(F ) k > k are Lipschitz contractions in the C norm, on u-slices

in U into u-slices near (00  (BL0(k) into BLt0 (k)), with the Lipschitz

constant < X , 0 < A < 1.

Let Uu n F-1U. Then U is open and P1 V 1) since q, Z U. If

1 is large, the distance between f) and U is positive. It is also

clear that 6 n F-10 c: n n:-lu 1, n F-lu U n 1: UI. I1N induct ion,

-"-l-KI)-l--

we have (u n F i W ) F . Clearly, L1) C (IJ f y- k- U. We claim

that 0 c (U n Fl) t , since U and -7 c U. Therefore, I-0 c (1) n U1 k- 1
"

0

and 1 : F- r(D 0 ) c F-m(U^ n F- U. The last set is open so there is an

; -, ,- .- '.,, .' , , ., .. ..... . ..... '-' ... ,, .,.. ._ - .., -' , -. . .... . '-? -" ; , ? . ,,". '. . ,.. . .. '.."'".



open neighborhood U1  of !) such that U I n J= U c U, 1J I C vI

ope m 1 6. 1 cl a t 1 1 1

and U1 C Fm(0 nl Fl )kU Wecmtat UO= U, U1 , U.i = V.i1 21 - i,L i - i' . .

% associated with k (U1 depends on T) fulfill all the requirements of the

theorem.

We first show that J1 (TZ)c TU. For this, only condition 2) in

Definition 5.1 has to be checked. Suppose -c, E TZ with i (-l) E U

T( E UO, then Tz(-m) E U ( U Fm(u n F-1 - U. This implies that rj(O)

S(0 n F-) U. Hence, for 1 <_ j <_ -T, (j) E (U n F-) k-l-Jo = U.

Therefore,

Jl1(TZ> (t ( .... 0][0 .... )If C TU { ( . U0 [N O, . . . .

This, together with J 1( .... 0][0 ...) = (...,U 0 ][U0 ,...), implies J1 (TZ) C TU.

It remains to show that JI(TZ) D TU and J is single valued and

continuous. It suffices to prove the following assertions:

(i) J is well defined, single valued and continuous on TU-{(...,Uo]

(ii) J1 (...,Uo][U0 ,...) = (...,0][0,...) and J is continuous at
i (...,u01[u0 , . . .

For (ii), by Theorem 3.1, J-1 (...,U 0 [U0,...) must lie on Woc(0) and

Wl o(0); hence, identically equal to zero. It follows from Lemma 4.4 that if

Tz E TZ such that z[-i.i] = (U0 ,...,U0] [U0 .... U0), then r z(0) lies on

i i+l
s-slices C(X) near W and u-slices C(X) i  near WU(o < X < 1) in the

0~- i
C0  norm. Therefore, Tz (0) is in a ba]l of radius 2C(t) centered at 0.

Zz(O) -, 0 as i - ,=. Therefore, J is continuous at ( .1..1 ][U,...).

For (i), it suffices to show that J 3 JkJ is well defined, single
3 1 2



valued and continuous on TN, since by Theorem 5.5, .J, T. lii is a hollio-

morphism. Also, see the comment after Definition 5.3. It is now clear that

we have to show that J J is well defined, single valued and continuous

on n [k,+c].
N

n+

S" T N go-O TU o2 I

Let Ti N_ k+ Assume that

k n  for all n. The other cases can be proved similarly. If -,_ E

Jl1 2 TIT' it is necessary that T z(0) E DO .' Lot 7(k_i .... ,k_] 1 [k0 l .... kj)

denote the subset of D O0 such that for each z E 7(k-ip .... 3k_,][k 0 ....kj)

0 0 = , ,k ] k , , )there exists a finite trajectory T z  with Jl Z = (K i2 ... -I "'",. .,

0Z

and TOz(0) = z. Evidently,

F..+MZ k~ p... )k_2 ] [k_l,...,k j) Z(k_i) .... Pk_l 1 [k 0 .... , kj)

. , We claim that z(kN , ' . . k l [ O , . , N l  is contained in a set of s-slices
,C BLet(k) (a set of u-slicesc )) in which the distance between

any two of them is C a Th s clearly true for N =1 For N

the assertion follows from

'

thr xssafnt raetr ih 0I',.

an 0 .Eiety

" ,', , ,",",".' ."," .' k..- ." Z-" .- ". ..- -". "-2 . .. " " .-1,- .'- . -' - •":.""" """"""" ""..".' ',
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-.

-I0 I-i
I  F~~1 k- l~m: (k__flk 1 ,kl),k 1  =-.(k _ ,k _ [ k0i,k 1 I,

FkO~m2k__,,~l [k,k 1 ) = Z(k_ ,k _l1,ko] [k),

and the contractiveness of Fk- 1+m on u-slices and F-ko -m  on s-slices

considered. It follows by induction that the assertion is valid for general

N. We have shown that

(5.1) Ck Z(k N,...,k ][k 0, ... kN-l) c a closed ball of radius < CI(I N .

It is easy to see that T,(0) E n> CZ Z(k i .... lk lk 0 ..... kj). Similiarly

rz (-Z) E i,0>0 CZ Z(k_i ... k_n-1 ][k - n,....),

(5.2) n
= I . k + nm , n = 0,1,...

The right hand side of (5.2) is a singleton set since it is the intersection

of descending closed sets with estimates (5.1). Therefore T s unique if

it exists.

Conversely, define formally by (5.2) on a sequence of infinitely manyz

-Z's and choose the values of Tz  between each of the -Z's and after Tr(O)

by the map F. We can verify that -rz  is a trajectory in TZ and J2

ki . . . , k _ l ] [ kO , . . . , k j , . . . = Jl. We start with

Fm+k - n (-z) = Fm+k-n  n CZ z(k i .. kn-1][k I
z n j"- "n

ij>>nn CZ Fm+ k-  11 Z(k_i, ... ,Pk_n-1l][k_ n,...,k)

i ,j >n

- fl CZ m ~ - Z(k .... ,k ~][k n , . , )i,j>n

=n Cz Z(k ..i P. k_n ] [ k _ n+l' , k )i,j->n



7 - .-

* Since the last is a singIton set, all the inclisions are equalit ies.

This proves the consistency of the definition of : on the -,' s. THie

".a. only thing unpleasant is that r(-j ) C C, Z(k i,...,k 11k ,

not T (-Z.) E Z (k_ ,k ][n n . ). But,

Cz Z(k ... O ,k ]_[k k CZ "[k .,k

c:Z [kn ... k _

due to the continuity of the forward iterates of F. Therefore, the iterates

of F on T (-Z) must stay in the "body" for k ... ,k times before
" -n.i

leaving the "body" for the "handle". Since j can be arbitrarily large,

T E TZ and J2(...,kij ... k_ ][ko... ,k....) = TZ

The continuity of J1 lJ, follows from (5.1). This completes the proof

of the theorem.

Corollary 5.6.

(Sil'nikov [14]) TN is homeomorphic to TZ0  via the map J3  Ij

Corollary 5.7.

Suppose the distance between U.U., 0 < i < j < in is positive. Let

J =(8 (!l() r(2)
(zY 8 = 1,2. Then, c (i) -* (2 (i) as i + (- ) ifi u I U " - -

and only if r(1)(i) = T (2) (i) for i > n (<n), where n is some constant.

u u - - _ _ __ _ _ _ _

Proof. Necessity is trivial. Sufficiency follows from estimate (5.1).

§6. Further Consequences.

Throughout this section, we assume the hypotheses of Corollary 5.7 are

satisfied. The above results are generalizations of the work of Sil'nikov

[141 on diffeomorphisms in Rn . We generalized it to Ck  maps in Banach

4% " ¢e€; ; ' " , ': , t - ,' -, -" ' 7 -- ' ' ." '' :" :. ,"""" '-,
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spaces, and refined the argument 1y showing that the extended neighborhood

and k can be associated in such a way that all the trajectories in the

neighborhood can be symbolized precisely by TU, depending on k-. Note that

in the notation of Sil'nikov's original work, trajectories in N , N-, N-,

and N, i.e., asyvmptotic to 0 in the positive direction, negative directionm

1both directions, and not asymptotic to 0 at all, are symbolized distinctly.

However, our work shows that trajectories in any of the four subsets are dense,

a phenomenon concealed by his original symbolization. To illustrate, we show

that the trajectories that are asymptotic to 0 in both directions are dense

in TZ. Given T z E TZ, J IZ = Tu = ( .... U ,...,U a  ][U 4 ... ,u ... ).

Let T(n) = (...U UU _ ,...,U .... U ,U0,U 0 .... ), n > and, et* U <' ' 0''Ux-1in ] o x 0 n>n1 an

T (n) = j-T(n) . By Corollary 5.7, T is asymptotic to 0 in both directions
4z 1lu

for each n > 1. Furthermore, T (1 - since T (n) u
-u u

All the significance of the symbolizations for diffeomorphisms discussed

by Sil'nikov and Smale hold true in our case. For example, there are countably

many trajectories that are periodic or homoclinic to 0 in TZ. TZ is topo-

logiacally transitive, i.e., there is a trajectory c E TZ such that anzz

n = 0,±1,... , is dense in TZ. We infer that each trajectory in TZ is

unstable from the instability of TU, since given any T E TU, we can construct

()-,such that (O = -r and r u (i) - (i) for infinitelyu suhta u u ( -  u Zu

many i > Z. From Corollary 5.7, lim supl ')(i) - T,(i)I > E > 0, where

T ( J1TU and [ = J I up = is a constant independent of Z. But

Tk (0) - T(0) as Z -. This proves the instability of each trajectory.

The following is a counterpart to Smale's invariant, Cantor like set

near a homoclinic point [1)].



Corollary 6.1. There exist an integer k > 0 and a subset of trajectories

TZ(k) of Fk in a neighborhood of 0 7 such that Fk  acting on TZ(k)

is invariant and equivalent to the shift of the dvnamic system of two symbols.

Proof. By Theorem 5.2, it suffices to examine o on TU. Let k > k + m

be any fixed integer. If, by the symbol so, we mean {U., .... U} and the

k-fold
symbol sip {U 0 .... U0 ,1J... ,U r , a subset of TU is defined and is invariant

k k-foldundera

Comparing our results with other papers, one finds that the invariant set

of trajectories under PF are discussed instead of the invariant set of points

under F. For F being diffeomorphic, define P as the projection P : TZ
-de.

P, z = T (0). Then P is , homeomorphism from TZ onto T()d =P(TZ).

. F : TZ -* TZ is equivalent to F : T2(0) - TZ(0), via P.

TZ TF TZInF

PP

TZ(O) F . TZ(O).

Therefore, the symbolizations for the point set T:(O), invariant under F is

induced from that of TZ, or F : TZ(0) - TZ(0) is equivalent to a shift homneo-

morphism a : TU - TU.

Another interesting case is the appearance of a snap-back repeller named

. after Marotto 1l0]. An expanding fixed point 0 of a C' map F -

is said to be a snap-back repeller if there is a point E W uc(0) withz0  o

-z 0# 0, and an integer n > 1 such that F(z 0 ) = 0 and 0F (:0 is an

isomorphism onto Z, for 1 < i -, n. It is easy to see that there is a

transverse homoclinic trajectory TE passing through z0 and hitting 0

4i



after finite iterates of F. And it can be treated as a special case of

Theorem 5.2 with W5 o(O) . floever, the results are nicer i f W
boc

consider positive trajectories :+ and . Let UO U. . . , U  he open sets
U M.

containing 0 and 0 E U Let S = U.. ,U and k 0 an intecr.
T 0*

A subset TU+ c FTn+S is defined on -+ E Tu+ if and only\ if 1) and 2)

but 3) of Definition 5. 1 hold. TU+  is a topological space with the topology

induced from IN+S. The semishift operator !+ is defincd on TU+  as

+Tu(i) = Tu+ (i+l) , i C N'. is continuous, suihective but not inijective.
u u

Let TZ+ c FTN+ be the set of all the positive trajectories whose orbits

are contained in U< U.. TZ is a topological space with the topology
O<1<m I

induced from T . Let P be the projection from TZ to T-+ ((

P(T_7 c Z, defined as PT+ =+(0) C 2 for any, -, C TI+. It is obvious

that P is a homeomorphism. Let J T- - TU be defined as (i ) =
1 U.

(= . if tr(i) C U. 0 < j i > 0.
U z uj

Theorem 6.2. Suppose F : Z - Z is C with 0 as a snap-back repeller.

Then there exist open sets U0 ... ,Um  and an integer k > 0 such thatm. +

U U. contains the homoclinic orbit and 0 E U0 . Furthermore, J I -0' < i<m 0 '

TU is a homeomorphism and the following diagram commutes.

TZ (0) TZ + (0)

P P
T Z - T,

TIJ + 
TU

The proof of Theorem 6.2 is similar to that of Theorem 5.2. One only

has to observe that the s-slices are points in 2 and the u-slices coincide

with W (0). We don't ask that DF be uniformly continuous in the nieghborhood
.c



of 0 since the Inclinition Lcmias a r" triv all\" true in thi casC. Ne

obtain that, when a snap-back repeller appears , the above i:. lic dynam c>

can be used to discuss trajectories, positive trajectories mII invri :mnt

* point sets in a neighborhood of the homoclinic orbit

-7. Chaotic behavior.

We have shown that trajectories in F have veryV complicated behavior -

the motion of F x,(O) is quite unpredictable except that it must stay in

U for at least k iterates of F before leaving U for the "handle".

We shall show that this kind of motion imiplies chaos described by Li and

Yorke [9], [10], [17]; that is, if TZ is homeomorphic to TU via J11

then there exists chaos in the following sense:

1) There exists k > 0 such that for each integer p > k, F has a

trajectory of period p.

2) There exists a subset of uncountablx" many trajectories CIIAOS TZ

such that,

a) for every TO(1 (2) E CIL.\OS with (1) (2)
z z

(.) (2)

(7.1) lir supi-( (i) - (i)J > 0;

b) being Periodic in T, (7.1) is valid.

-C) T E CI AOS implies that

Slirm inf! ( 1) - (2) ci [=0I m in : (i) - .~ 0.

3) FF (CHIAOS) CIiOS.

SThe ideas of the proof presented here are essentiall" from [1(i .

. . .. . ..
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o

Proof. 1) Let k = k + in. Let (...,repeat, U0,. . . ,U ,repeat

p- fold

then = JI TuE T is a trajectory of F with the period 1p.

2) Let s = 'U U }' Sl { 'J .. U,  .. 0 }1 k = k + .

k-fold k -fold

% For each w E (0,1), choose an element Tw E TU, composed by and s
U 0

such that

~w w (...;s ; S ; MIs ;S ;. .; ; ..

a.=l only if i = ±n-, n=l,2,.. .; and lih -W ,nf,
+•(T W 1

where R-( ,n 2 ) is the number of a .'s which equals 1 for (l<i<n) (-n-i
u-

< <-1) respectively.

Let CHS w- 1 E (0,1), i E NJ . Evidently, o(CIIS) = CHS. Therefore,

. if CHAOS = J1(ClS), TIF(CLAOS) = CHAOS. The assertion 3) is proved. In

-.* proving 2), we only consider the case i +-. We first show that a) is true

f or -z(1) = j and r = J  u) ' j $ 0. Since w 0, there exist

j w 2infinitely many integers n such that ' (kn-) = U . a -r(kn-1) (kn+il)
u m U

If n is sufficiently large, kn2*j-1 is not of the form kk2-1 for any integer

jw 2, thus a -r (kn 2 ) X U This shows (7.1) is valid in this case. Obviously
U m"'"a) isalso trefor 11!) a-j i , ) (2) -il " wuv

"-,( 1) - 1 i w ) 2 j . wais alotrue 1 - i ( U) z1 J( ~)i j .Wc next show

that a) is true for ) J 1 (a' 1) and T(2) I w,. Let
1 u z 1 u 1

R ( ,kn-) be the number of U( which equals U for 1 < kn. We

observe that

(7.2) lia = .
nn

.n-..

U.,



-

.T2 1 W

For any given K > 0, there exists an ;: K such that 1 : ( -

U L

Otherwise, from (7.2), one would have w 1 w, contradict inli the fact thAt

W w'. The proof of a) is completed. b) can be proved similarl . 'l.

prove c) , notice that for any u C CIIS, the length of the successi e i

such that T u(i) = U0  approaches - as i - +-. Therefore, for

T(2) (1) (2)."- T E CtlS, the length of successiv~e i s such that =: ( 1

approaches +c as i -+ +.. c) is true by (5.1). This completes the proot

of the existence of chaos.

The work of Li and Yorke indicated that Period 3 implies chaos in RZ.

Marotto pointed out this is not the case in R. fie proved that Snap-hack

nRepeller implies chaos in R . Our work shows that the transverse imo;:ioclinic

trajectory implies chaos in Banach spaces.

§8. Flows.

Noninvertible maps also arise form the Poincar6 mapping of noninvert ibIC

flows. The Poincar6 map can either be the return map around a periodic tra-

jectory for an autonomous flow or the period map of a periodic flow. Both

*" cases are discussed in this section.

Let X be a Banach space and T(t,s), t > s in R be a semigroup of

nonlinear maps in X. We assume that

U.> 1) T(t,s) is strongly continuous in t,s;

2) T(s,s) = I;

3) T(t,u)T(u,s) = T(t,s), t > u > s;

Ck
.. 4) There are constants . > 0I, k 1 such that T(t,s)x is C joint lv

,." in t and x for t > s+±.

Examples of abstract evoluti on eqluations with 0= I) may be found in [1

.o



We -ay tha T-~s is peioi of. peio , >- fTts

I'-

r..- For delay equations under some general conditions, . = ky,, where . . 0 is

i the delay [3]

.'.. We say that T(t,s) is periodic of period > 0 if T(t,s) = Tt.

s+w). If we do not assume that w is the least period, then we may assume

W > L. The period map F = T(w,O) is then Ck  on X. If -(t) is a periodic

trajectory of T(t,s) with the period .j; that is, T(t,s)T(s) = (t), t > s

in R, -(t+w) = (t), then 7(0) is a fixed point of F. Conversely, any

,fixed point of F can be used to define a periodic trajectory. One can define

homoclinic trajectories of T(t,s) asymptotic to '(t) in the obvious way

-. ,

and relate them to homoclinic trajectories of F asymptotic to C-(O).

We next assume that the semigroup is autonomous; i.e., T(t,s) =T(t-s),

t > s in R. Let F(t) be a periodic trajectory of least period j> 0

of T(t), t > 0; that is, T(t)>(s) = r(t+s) for all t > 0, s E R, (t+.) =

r(t) for all t and U(t) / (O), 0 < t < w. Replacing w by nw.,, we maY

assume j > a. Let X I X be a codimension one hyperplane transversal to

.4 the periodic trajectory at x = (0). There exists a neighborhood U of

(O) in X such that for every x E U, there is a unique t = t(x) near

. such that T(t(x))x E X1. The map F U X 1  is defined as F(x) =

T(t(x))x and is C It is clear that :(0) is a fixed point of F.

Suppose x = p(t) is a homoclinic trajectory of T(t) asymptotic to x =

.(t). There is a constant > 4 such that for Jt] > U, x = p(t) is

near the orbit of x = 7(t) and intersects U c X1  successively as t .

Let (1 = p(t1) and q. = p(t,), q1 ,q 2  ., with t < -c and t, > T.

%F-nqn

Fnq and F , n 0, are defined as the intersections of p(t) with X

-%" and agree with the definition of 1 given before. Obviously, Fn'X, - "(0)

and F n( 4 (0) as n . ssume that there are open sets 1 and UICU

%-.,- - ' . " - , - . - . . .- . .. , -
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n,

U'.-", .n (n~ - nq )c l l' o e

such that U1 n u, 0, q1 E U1  and fI F )U (I1 U'. e rede-

fine F in U as Fql = q, and Fx ; for x E U1 and E C I1, such

that u = T(t(x))x with a unique t = t(x) near t-t1 1his could

be done if U1  is sufficiently small so that the flow issuing from U11 meets

U2 transversely in a uniquely determined time t = t(x) near t,-t. Thus,

F : U1  U2 -* X is Ck with a fixed point (0) and a homoclinic traJctorv
1. 2 1

-n n
IF ql,F q., n > 0).

U1

U2

%- .

;. .4..:

Figurc 3.1
4-.

Definition 8.1. Suppose T(t,s) satisfies hypertheses 1) 4) and is either

periodic or autonomous. Suppose that x = (t) is a periodic trajectory with

the Poincare map F defined previously. It is said to ba a hyperbolic periodic

trajectory if a(DF(g,(O))) n {I,) = l} = 0.

Note that the map F can be different if we take other hyperplanes trans-

versal to the periodic trajectory, e.g., in the periodic flow case, the section

can be {t*} x Xc R x X and the map is T(t*+a,t*) . Thus, we shall justify that

Definition 8.1 is independent of the Poincare section chosen. Also, if <

there is no unique way to choose nw > with integers n > 0. We shall prove

Definition 8.1 is independent of n.

'p..

i' ;-,- . ---.. . "-. .-. -.:-v -.. ..--. .. .. -.-.. -.-.. . ......-... ... -. ..-. .. .. ..-. ...- .. - .
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The stable set w S(()) and unstable set IV u((.)) of x = (t) is

defined inthe usual way. The existence of the local stable manifold

W ((-)) c W S(r(-)) and local unstable manifold W ((.)) c V(_(.))
loc boc

in a neighborhood of the orbit of a hyperbolic periodic trajectory x = -(t)

shall be proved in Theorem 8.3.

4 q.Definition 8.2. A homoclinic trajectory x = p(t) of T(t,s) in a Banach

space X, asymptotic to a periodic trajectory x = F(t) of T(t,s) is

said to be a transverse homoclinic trajectory if

1) the periodic trajectory x = r(t) is hyperbolic;

2) for any sufficiently large pair s, t > 0 such that p(-s) C Wl o(u(.))
boc

and p(t) E Ws oc((.)) T(t,-s) sends a disc containing p(-s) in W .o U( ( ))

diffeomorphically onto its image which is transversal to W ( (.)) at p(t)
.oc

Note that in the forgoing definitions W1o(1(.)) = {(-)} as well as
1 oc

x = p(t) hits the orbit 0.) at some finite t is allowed. It is also

clear that W (C(0)) and Ws (r(0)) of the fixed point ,(0) of F are
loc loc

A precisely the intersections of W (-) and W0 ( (.)) with the Poincare

section. Another observation is that x = p(t) is a transverse homoclinic

trajectory if and only if it induces a transverse homoclinic trajectory on

the Poincare section for the fixed point r;(0) of the map F. There is a

geometric explanation for Definition 8.2, that is, there are two narrow strips
locally diffeomorphic to Wu and IVo( (.)) respectively (Immersed

loaly ±LLJ1U~ ~11 t o c boc
image of Wu (r(0)) x R and Ws  (:(0)) x R, not necessarily injective)

attached to x = p(t) and intersect transversely along x = p(t). See

Figure 8.2 for the illustration of the unstable strip.

F 8::
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W u

X pt)

Figure 8.2.

Theorem 8.3. Let x = (t) be a periodic trajectory with the period w > 0.

for T(t,s) satisfying conditions 1) - 4). Then in both the following cases,

L T(t,s) ; T(t-s) or T(t,s) = T(t+, ,, s+w), the definition of the hyperbolicity

of x E(t) is independent of the integer n, nw > a, or the Poincar6 section

chosen. Moreover if T(t,s)x is Ck  jointly in t, s and x for t > s+a.

the local stable and unstable manifolds I1 oc(-(')) and Wuloc( ')) exist

and are Ck  submanifolds in X for the autonomous case and in Rx X for

the periodic case.

Proof. Only the proof for the periodic flow shall be given. Let FI = T(nlw,0),

F2 = T(n2 , ,0) where n1  and n2 are integers with n1w > a, n2W > a.

F 2 
= nldefF

1 2 -3* (0) is a hyperbolic fixed point of F- if and only if it

is a hyperbolic fixed point of F1 and F2. This shows that the definition

of the h.yperbolicity is independent of the way the period is multiplied.

• = ., o. - ° .- , - - . o • . . .° . V . .
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0 c

W 10C W

II
xW loc ('t}

°J~s

W Wloc ( t

! 
u 

,
l C (0 )

Figure 8.3.

"il Assume that T(:.,0) has F(0) () as a hyp0erbolic fixed point.

-iThe existence of the local C k  stable and unstable manifolds WSoc(0) and

W oc(0) of T(w,0) on the section (01 x X c R × X follow from Theorem 3. 1.

Periodicity implies that IVo( = Wqoc(0) and Wsoc(M = W oc(0 ) . Taike

a section {t*} x X and, without loss of generality, assume that a < t*

and a < w-t*. Let the stable and unstable sets for x = "-(t), W s(F()) and

wU ( (.)) , intersect ft*} x X in IVs (t * )  anld IVU (t*). Obviously, W U(t * ) =

T(t*,o)Wu(o) and wS(t * ) = [T(,w,t*)]- Is(IV ). It is easy to show that T(t*,O)

o 

."
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is a Ck  embedding from Wi (0) into WU(t*) with [T(:,0)]-T(w,t*)
1 oc

as the inverse. Therefore Wi o(t*)defT(t*,O)Wo (0) is a Ck submani-
* bc boc

fold in {t*} x and Wioc(w) = T(w,t*)W lo(t* ) . Also TWioc( ) = DG(.,t*)

TWloc(t*). Now let Y c X be such that DT(,,t*) . Y c TW~o(wI Y is a

linear closed subset since TW5 (s ) is. It is easy to see that Y ( TWo c(t*)
1 oc 1 oc

= X. We write x E X as x = (xl,Y l ) where x E TW 1 (t*) and v Y
1 lo1

and use the Implicit Function Theorem to solve T(w,t*)W5  (t*) c s5 (w)boc blc ( J

We obtain that

W (t*) {(t*) + (xlY 1 ) x1 = g(yQ) gE ck (By) , g(O) = 0, Dg(O) = 0)

for some e > 0. Thus, W oc (t*) is a C submanifold in {t*} x X and
S 5

TW So(t*) = Y. The proof of the invariance of W oc(t*) and Wl (t*)
% lc oc boc

under T(t*+w,t*) is easy and is omitted. Estimates for the spectra of

DT(t*+w,t*) on TWSo(t*) and [DT(t*+cw,t*)] - I  on TWl (t*) can be
boc 1 oc

obtained by considering [T(t*+w,t*)]n = T(t*, 0)[T(w, 0 )n-l- T((j,t*) and

-n -l -n[T(t.+w,t.)W l~o(t.)]-: [T(w,t.)jW o(t. ) ]-[T(w,O)lW o(0 ) ]-n+l

t*,O) I Wo - and using Ia(L) I < lim (ILnll )f for a linear bounded

operator L. Consequently, (t*) is a hyperbolic fixed point under T(t*+Cj,t*)

and Wboc(t*), W oc(t*) are precisely the local unstable and stable manifolds

under T(t*+w,t*), due to the uniqueness. Thus, the definition of the hyper-

bolicity for the periodic trajectory of flows is independent of the cross

sections chosen.

The local unstable set of x =(t) is a neighborhood of t = t* is

determined by

Wloc( (.)) = {(t,T(t,O)x) t E (t*-c,t*+E), x E ' U() c R X,loc boc

W)~~~~..-.. ............... , .-...-.-.-. v. . . -,. . ." v .. ".-".>',-'." .' v,.'.-- ;'--': <:4' '<, -:
: , -o ,*-:. . '..-. . . .','* - . .° , ", ' , - " ", " " " "'. ..*, ' : ' - 4'
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a k u
for some c > 0. It is clearly a C submanifold modeled on R TIlo(0).

~ The local stable set of x = (t) in a neighborhood of t = t* is determined

by

Wl ' s= {(t,y) : T(w,t)y c WS (w) , t E (t*-E,t*+Ec} c Rx X,

for some c > 0. Using the local coordinates R xTW uo(t*) <Y, and the Implicit

Function Theorem, one shows that W ( (.)) is a C submanifold modeled
bocI

on RxY = RxTWloc(t*) . The proof of Theorem 8.3 is completed.

,'4

'94
it,

,.%.~
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